Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.871
Filtrar
1.
J Helminthol ; 98: e29, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566593

RESUMO

Hexamermis zirabi sp. n., recovered from a natural habitat of Mazandaran province, north of Iran, is described based on morphological and molecular data. The new species is characterized by its six cephalic papillae; cuticle with distinct cross fibers; conoid or sharply tapered head; mouth terminal; six hypodermal cords; J-shaped vagina oriented to the anterior end of body; uterus with Z-organs or sclerotized bodies; tail similar in both sexes and bluntly rounded; spicules paired, separate, slightly curved, shorter than body width at cloaca, with rounded tip; and male genital papillae arranged in five rows. In addition to the morphological study, molecular phylogenetic analyses using a partial large subunit (28S D2-D3) were also performed, and the new species formed a highly supported (1.00% Bayesian posterior probability (BPP)) clade with Hexamermis popilliae.


Assuntos
Nematoides , Feminino , Animais , Masculino , Irã (Geográfico) , Filogenia , Teorema de Bayes , Útero
2.
Folia Parasitol (Praha) ; 712024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38567406

RESUMO

Morphological data are used to describe a new nematode species, Heterocheilus floridensis sp. n. (Heterocheilidae) from the digestive tract of the Florida manatee Trichechus manatus latirostris (Harlan) (Trichechidae, Sirenia) from Florida, USA. Examination by light and scanning electron microscopy revealed that the new species differs from the related Heterocheilus tunicatus Diesing, 1839 mainly by having dentigerous ridges on the inner surface of the lips, a median unpaired papilla located anterior to the cloaca, and a considerably larger body size. Sequence data for subunits I and II of mitochondrial cytochrome oxidase gene, 18S small subunit and 28S ribosomal RNA genes were provided for molecular characterisation of the new species. However, the current unavailability of homologous sequence data for congeneric specimens precluded a molecular assessment of the morphological species hypothesis, and ascaridoid phylogenetic hypotheses could not be advanced. Specimens of Heterocheilus sp. collected from the Antillean manatee Trichechus manatus manatus Linnaeus in Puerto Rico, on loan from the US National Museum of Natural History, were morphologically consistent with the new species, so apparently all congeneric nematodes reported from both subspecies of the West Indian manatee Trichechus manatus Linnaeus and previously identified as H. tunicatus belong rather to H. floridensis sp. n. Heterocheilus hagenbecki (Khalil et Vogelsang, 1932) Sprent 1980 is here considered to be a species inquirenda. A key to valid species of Heterocheilus Diesing, 1839 is provided.


Assuntos
Nematoides , Trichechus manatus , Animais , Sirênios , Filogenia
3.
BMC Genomics ; 25(1): 341, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575858

RESUMO

BACKGROUND: Parasitic nematodes, significant pathogens for humans, animals, and plants, depend on diverse organ systems for intra-host survival. Understanding the cellular diversity and molecular variations underlying these functions holds promise for developing novel therapeutics, with specific emphasis on the neuromuscular system's functional diversity. The nematode intestine, crucial for anthelmintic therapies, exhibits diverse cellular phenotypes, and unraveling this diversity at the single-cell level is essential for advancing knowledge in anthelmintic research across various organ systems. RESULTS: Here, using novel single-cell transcriptomics datasets, we delineate cellular diversity within the intestine of adult female Ascaris suum, a parasitic nematode species that infects animals and people. Gene transcripts expressed in individual nuclei of untreated intestinal cells resolved three phenotypic clusters, while lower stringency resolved additional subclusters and more potential diversity. Clusters 1 and 3 phenotypes displayed variable congruence with scRNA phenotypes of C. elegans intestinal cells, whereas the A. suum cluster 2 phenotype was markedly unique. Distinct functional pathway enrichment characterized each A. suum intestinal cell cluster. Cluster 2 was distinctly enriched for Clade III-associated genes, suggesting it evolved within clade III nematodes. Clusters also demonstrated differential transcriptional responsiveness to nematode intestinal toxic treatments, with Cluster 2 displaying the least responses to short-term intra-pseudocoelomic nematode intestinal toxin treatments. CONCLUSIONS: This investigation presents advances in knowledge related to biological differences among major cell populations of adult A. suum intestinal cells. For the first time, diverse nematode intestinal cell populations were characterized, and associated biological markers of these cells were identified to support tracking of constituent cells under experimental conditions. These advances will promote better understanding of this and other parasitic nematodes of global importance, and will help to guide future anthelmintic treatments.


Assuntos
Anti-Helmínticos , Nematoides , Humanos , Animais , Caenorhabditis elegans , Intestinos , Nematoides/genética , Perfilação da Expressão Gênica , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico
4.
Sci Adv ; 10(15): eadk6062, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598624

RESUMO

Experimental genetics in a nematode reveals a key role for developmental plasticity in the evolution of nutritional diversity.


Assuntos
Duplicação Gênica , Nematoides , Animais , Genes de Troca , Evolução Molecular , Nematoides/genética , Genoma , Filogenia
5.
J Helminthol ; 98: e32, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618914

RESUMO

Two new species of the genus Sectonema found in northern Iran are characterized, including morphological descriptions and molecular (18S-, 28S-rDNA) analyses. Sectonema tehranense sp. nov. is distinguished by its 7.22 - 8.53 mm long body, lip region offset by constriction and 24 - 31 µm wide with perioral lobes and abundant setae- or cilia-like projections covering the oral field, mural tooth 15.5 - 17 µm long at its ventral side, neck 1091 - 1478 µm long, pharyngeal expansion occupying 61 - 71% of the total neck length, female genital system diovarian, uterus simple and 3.9 - 4.2 times the corresponding body diameter long, transverse vulva (V = 49 - 59), tail short and rounded (44 - 65 µm, c = 99 - 162, c' = 0.6 - 0.8), spicules 111 - 127 µm long, and 7 - 10 spaced ventromedian supplements with hiatus. Sectonema noshahrense sp. nov. displays a 4.07 - 4.73 mm long body, lip region offset by constriction and 23 - 25 µm wide with perioral lobes and abundant setae- or cilia-like projections covering the oral field, odontostyle 14 - 14.5 µm long, neck 722 - 822 µm long, pharyngeal expansion occupying 66 - 68% of the total neck length, female genital system diovarian, uterus simple and 2.4 - 2.7 times the corresponding body diameter long, transverse vulva (V = 54 - 55), tail convex conoid (39 - 47 µm, c = 91 - 111, c' = 0.8 - 0.9), spicules 82 µm long, and seven spaced ventromedian supplements with hiatus. Molecular analyses confirm a maximally supported (Epacrolaimus + Metaporcelaimus + Sectonema) clade and a tentative biogeographical pattern, with sequences of Indolamayan taxa forming a clade separated from those of Palearctic ones. Parallel or convergent evolution processes might be involved in the phylogeny of the species currently classified under Sectonema. This genus is certainly more heterogeneous than previously assumed.


Assuntos
Helmintos , Nematoides , Feminino , Animais , Irã (Geográfico) , Citoesqueleto , DNA Ribossômico/genética , Nematoides/genética
6.
PLoS One ; 19(4): e0298905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578734

RESUMO

Nematodes are keystone actors of soil, freshwater and marine ecosystems, but the complexity of morphological identification has limited broad-scale monitoring of nematode biodiversity. DNA metabarcoding is increasingly used to assess nematode diversity but requires universal primers with high taxonomic coverage and high taxonomic resolution. Several primers have been proposed for the metabarcoding of nematode diversity, many of which target the 18S rRNA gene. In silico analyses have a great potential to assess key parameters of primers, including taxonomic coverage, resolution and specificity. Based on a recently-available reference database, we tested in silico the performance of fourteen commonly used and one newly optimized primer for nematode metabarcoding. Most primers showed very good coverage, amplifying most of the sequences in the reference database, while four markers showed limited coverage. All primers showed good taxonomic resolution. Resolution was particularly good if the aim was the identification of higher-level taxa, such as genera or families. Overall, species-level resolution was higher for primers amplifying long fragments. None of the primers was highly specific for nematodes as, despite some variation, they all amplified a large number of other eukaryotes. Differences in performance across primers highlight the complexity of the choice of markers appropriate for the metabarcoding of nematodes, which depends on a trade-off between taxonomic resolution and the length of amplified fragments. Our in silico analyses provide new insights for the identification of the most appropriate primers, depending on the study goals and the origin of DNA samples. This represents an essential step to design and optimize metabarcoding studies assessing nematode diversity.


Assuntos
Ecossistema , Nematoides , Humanos , Animais , DNA Ribossômico/genética , Código de Barras de DNA Taxonômico , Nematoides/genética , RNA Ribossômico 18S/genética , Biodiversidade
7.
Methods Mol Biol ; 2756: 257-270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427298

RESUMO

Nematodes form various associations with soil microbiome. Experimental studies on nematode-attached microbes can improve mechanistic understanding of these associations and lead to new discoveries relevant for the field of nematode biocontrol. Microbial attachment to the surface of phytonematodes is very specific and influenced by a multitude of factors, including the designation of nematodes and microbes, environmental and biological factors in soil, time of incubation, and the ratio and evolutionary trajectories between nematodes and microbes. Here, we describe how the classical nematological and microbiological techniques can be coupled with the advanced molecular tools to study the microbial attachment to phytonematodes in soil. We focus on the characterization of nematode-attached microbes using classical microbiological approaches and high-throughput amplicon sequencing and on the effects of nematode-attached microbes on plant defense responses.


Assuntos
Microbiota , Nematoides , Animais , Microbiologia do Solo , Solo , Fatores Biológicos
8.
Methods Mol Biol ; 2756: 1-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427292

RESUMO

The study of nematodes requires availability of nematode specimens and their population densities in plants and soil. This can be achieved using adequate sampling schemes and extraction methods. In this chapter, the most common and suitable sampling and extraction procedures and equipment are described. These include the use of Baermann's funnels, Cobb's decanting and sieving, floating methods such as the Oostenbrink method and Fenwick can, elutriators such as Seinhorst methods, centrifugation methods including that of Coolen, and mechanical and enzymatic maceration. The combination of different methods for cleaning the nematode suspensions is described, such as Cobb's sieving with Baermann's funnels or centrifugation, and for cysts combining Seinhorst's elutriator or Fenwick can with the alcohol methods. Methods for extraction of eggs and/or juveniles of cyst and egg mass forming nematodes, to be used as inoculum or to ascertain egg viability, are also described. Only little information is also noted on the use of molecular tools to identify and quantify nematode populations in soil and roots.


Assuntos
Nematoides , Tylenchida , Animais , Plantas , Solo , Raízes de Plantas/parasitologia
9.
Methods Mol Biol ; 2756: 271-289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427299

RESUMO

Plant-parasitic nematodes have enormous economic and social impacts. The majority of plant-parasitic nematodes are soil dwelling and feed on plant roots. Exudates from actively growing roots initiate hatch of some nematode species, thus ensuring infective juveniles emerge in close proximity to host plant roots. Several gradients of volatile and non-volatile compounds are established around plant roots, at least some of which are used by nematodes to orientate toward the roots. Plant-parasitic nematodes are microscopic in size (less than 1 mm in length and between 15 and 20 µm in diameter), so investigations into behavior are challenging. Various in vitro techniques have been used to evaluate the effects of root exudates. The techniques can also be used to evaluate the comparative attractiveness of different plants or cultivars of the same plant species. This chapter describes some examples of different types of basic in vitro assays.


Assuntos
Nematoides , Tylenchida , Tylenchoidea , Animais , Raízes de Plantas/parasitologia , Exsudatos e Transudatos , Solo
10.
Methods Mol Biol ; 2756: 247-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427297

RESUMO

DGGE (denaturing gradient gel electrophoresis) is a nucleic acid separation technique applied to the evaluation of microbial biodiversity. This technique is quite rapid and cheap compared to other types of analysis. Here we describe the comparison of nematode communities inhabiting different ecosystems. After an ecologically representative sampling collection and the nematode extraction from soil, nematodes are centrifuged in Eppendorf tubes to facilitate DNA extraction. DNA from the whole community of each type of soil is extracted, amplified with primers for 18 S rDNA and used in DGGE analysis. The profiles of DGGE can be analyzed with appropriate software, and biodiversity indices can be estimated.


Assuntos
Ecossistema , Nematoides , Animais , Biodiversidade , DNA Ribossômico/genética , Reação em Cadeia da Polimerase/métodos , Nematoides/genética , Solo , Eletroforese em Gel de Poliacrilamida , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Microbiologia do Solo
11.
Methods Mol Biol ; 2756: 291-304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427300

RESUMO

Full compatible interactions between crop plants and endoparasitic sedentary nematodes (ESNs) lead to severe infestation of the roots and plant growth impairing, as well as to the increase of nematode population in the soil that is a threat for the next planting crop. In the absence of activators, basic plant defense is overcome by nematode secretion of effectors that suppress defense gene expression, inhibit ROS generation and the oxidative burst used by plants to hamper nematode feeding site settlement and limit its development and reproduction. Activators can be exogenously added as a preventive measure to prime plants and strengthen their defense against ESNs. Activators can be an array of antioxidant compounds or biocontrol agents, such as mutualist microorganisms living in the rhizosphere (biocontrol fungi (BCF), arbuscular mycorrhizal fungi (AMF), plant growth-promoting bacteria (PGPB), etc.). In this chapter, methods are described for usage of both salicylic acid (SA) and its methylated form (Met-SA), and BCF/AMF as elicitors of resistance of vegetable crops against root-knot nematodes (RKNs). The rhizosphere-living BCF/AMF were recovered from commercial formulates pre-incubated in suitable growth media and provided exclusively as soil drench of potted plants. The plant hormones SA and Met-SA were provided to plants as soil drench, foliar spray, and root dip. It is indicated that activators' dosages and plant age are crucial factors in determining the success of a pre-treatment to reduce nematode infection. Therefore, dosages should be expressed as amounts of activators per g of plant weight at treatment. Thresholds exist above which dosages start to work; overdoses were found to be toxic to plants and useless as activators.


Assuntos
Micorrizas , Nematoides , Animais , Agentes de Controle Biológico/metabolismo , Doenças das Plantas/genética , Raízes de Plantas/metabolismo , Nematoides/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Micorrizas/metabolismo , Produtos Agrícolas/metabolismo , Solo
12.
Methods Mol Biol ; 2756: 343-350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427304

RESUMO

Heat shock proteins (HSPs) in all animals studied to date constitute potential indicators of stress, under various environmental conditions. The goal of this chapter is to show, for the first time, the suitability of the approach based on evaluation of the expression levels of heat shock proteins, as good indicators of stress induced in nematodes by the cultivation of resistant plant varieties or by other potential stressors.


Assuntos
Proteínas de Choque Térmico , Nematoides , Animais , Proteínas de Choque Térmico/metabolismo , Nematoides/metabolismo , Proteínas de Plantas/metabolismo , Resposta ao Choque Térmico , Proteínas de Choque Térmico HSP70/metabolismo
13.
Methods Mol Biol ; 2756: 305-316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427301

RESUMO

Reactive oxygen species (ROS) accumulation is one of the earliest hallmarks upon successful pathogen recognition in plants. H2O2 is considered the most important ROS in plant defense considering its relatively high stability and capacity to cross long distances in the plant. However, ROS also play roles in cell development and could hence facilitate nematode feeding site development. Several methods to analyze the cellular redox state exist, among which ROS detection and quantification and the evaluation of ROS scavenging enzyme activity (peroxidase activity, catalase activity, etc.). Here, we describe DAB staining, which is used to detect and localize ROS in planta upon an external trigger. Furthermore, ROS quantification using the FOX assay is described. Both methods have been used extensively in research and yield repeatable results in various plants.


Assuntos
Peróxido de Hidrogênio , Nematoides , Animais , Espécies Reativas de Oxigênio , Plantas , Antioxidantes
14.
Methods Mol Biol ; 2756: 351-382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427305

RESUMO

The growing interest in the use of entomopathogenic nematodes and their symbiotic bacteria as promising biocontrol agents of many arthropod pests and pathogens has created running technologies to expand their use globally. The related laboratory procedures and tests on these nematodes such as their isolation, count, culture, identification, pathogenicity, virulence, and environmental tolerance should form the solid basis for such an expansion with reliable uses. Extensive practical details of such procedures and tests as well as how to identify and overcome the problems associated with these aspects are addressed in this chapter.


Assuntos
Artrópodes , Nematoides , Animais , Controle Biológico de Vetores/métodos , Reprodução , Simbiose
15.
Parasit Vectors ; 17(1): 99, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429804

RESUMO

BACKGROUND: Soil-transmitted helminths (STH) infect more than a quarter of the world's human population. In the absence of vaccines for most animal and human gastrointestinal nematodes (GIN), treatment of infections primarily relies on anthelmintic drugs, while resistance is a growing threat. Therefore, there is a need to find alternatives to current anthelmintic drugs, especially those with novel modes of action. The present work aimed to study the composition and anthelmintic activity of Combretum mucronatum leaf extract (CMLE) by phytochemical analysis and larval migration inhibition assays, respectively. METHODS: Combretum mucronatum leaves were defatted with petroleum ether and the residue was extracted by ethanol/water (1/1) followed by freeze-drying. The proanthocyanidins and flavonoids were characterized by thin layer chromatography (TLC) and ultra-high performance liquid chromatography (UPLC). To evaluate the inhibitory activity of this extract, larval migration assays with STH and GIN were performed. For this purpose, infective larvae of the helminths were, if necessary, exsheathed (Ancylostoma caninum, GIN) and incubated with different concentrations of CMLE. RESULTS: CMLE was found to be rich in flavonoids and proanthocyanidins; catechin and epicatechin were therefore quantified for standardization of the extract. Data indicate that CMLE had a significant effect on larval migration. The effect was dose-dependent and higher concentrations (1000 µg/mL) exerted significantly higher larvicidal effect (P < 0.001) compared with the negative control (1% dimethyl sulfoxide, DMSO) and lower concentrations (≤ 100 µg/ml). Infective larvae of Ascaris suum [half-maximal inhibitory concentration (IC50) = 5.5 µg/mL], Trichuris suis (IC50 = 7.4 µg/mL), and A. caninum (IC50 = 18.9 µg/mL) were more sensitive to CMLE than that of Toxocara canis (IC50 = 310.0 µg/mL), while infective larvae of Toxocara cati were largely unaffected (IC50 > 1000 µg/mL). Likewise, CMLE was active against most infective larvae of soil-transmitted ruminant GIN, except for Cooperia punctata. Trichostrongylus colubriformis was most sensitive to CMLE (IC50 = 2.1 µg/mL) followed by Cooperia oncophora (IC50 = 27.6 µg/mL), Ostertagia ostertagi (IC50 = 48.5 µg/mL), Trichostrongylus axei (IC50 = 54.7 µg/mL), Haemonchus contortus (IC50 = 145.6 µg/mL), and Cooperia curticei (IC50 = 156.6 µg/mL). CONCLUSIONS: These results indicate that CMLE exhibits promising anthelmintic properties against infective larvae of a large variety of soil-transmitted nematodes.


Assuntos
Anti-Helmínticos , Combretum , Helmintos , Nematoides , Proantocianidinas , Trichostrongyloidea , Animais , Humanos , Combretum/química , Proantocianidinas/farmacologia , Proantocianidinas/química , Larva , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Helmínticos/farmacologia , Ruminantes , Flavonoides/farmacologia , Compostos Fitoquímicos/farmacologia
16.
Front Cell Infect Microbiol ; 14: 1296769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476164

RESUMO

Intestinal parasitic infections caused by helminths are globally distributed and are a major cause of morbidity worldwide. Parasites may modulate the virulence, gut microbiota diversity and host responses during infection. Despite numerous works, little is known about the complex interaction between parasites and the gut microbiota. In the present study, the complex interplay between parasites and the gut microbiota was investigated. A total of 12 bacterial strains across four major families, including Enterobacteriaceae, Morganellaceae, Flavobacteriaceae, and Pseudomonadaceae, were isolated from Channa punctata, infected with the nematode species Aporcella sp., Axonchium sp., Tylencholaimus mirabilis, and Dioctophyme renale. The findings revealed that nematode infection shaped the fish gut bacterial microbiota and significantly affected their virulence levels. Nematode-infected fish bacterial isolates are more likely to be pathogenic, with elevated hemolytic activity and biofilm formation, causing high fish mortality. In contrast, isolates recovered further from non-parasitised C. punctata were observed to be non-pathogenic and had negligible hemolytic activity and biofilm formation. Antibiogram analysis of the bacterial isolates revealed a disproportionately high percentage of bacteria that were either marginally or multidrug resistant, suggesting that parasitic infection-induced stress modulates the gut microenvironment and enables colonization by antibiotic-resistant strains. This isolation-based study provides an avenue to unravel the influence of parasitic infection on gut bacterial characteristics, which is valuable for understanding the infection mechanism and designing further studies aimed at optimizing treatment strategies. In addition, the cultured isolates can supplement future gut microbiome studies by providing wet lab specimens to compare (meta)genomic information discovered within the gut microenvironment of fish.


Assuntos
Microbioma Gastrointestinal , Helmintos , Enteropatias Parasitárias , Nematoides , Parasitos , Humanos , Animais , Microbioma Gastrointestinal/fisiologia , 60455 , Bactérias , Peixes , Imunidade
17.
PLoS One ; 19(3): e0298400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478489

RESUMO

Facultative parasites can alternate between a free-living and a parasitic existence to complete their life cycle. Yet, it remains uncertain which lifestyle they prefer. The optimal foraging theory suggests that food preferences align with fitness benefits. To test this hypothesis, we investigated the facultative parasite nematode Rhabditis regina, assessing its host preference and the associated benefits. Two experiments were conducted using wild nematode populations collected from Phyllophaga polyphylla, their natural host. In the first experiment, we used a behavioral arena to assess host preference between the natural host and two experimental hosts: Spodoptera frugiperda which is an alternative host and dead Tenebrio molitor, which simulates a saprophytic environment. In the second experiment, we subjected wild nematodes to "experimental evolution" lasting 50 generations in S. frugiperda and 53 generations in T. molitor carcass. We then compared life history traits (the size, survival, number of larvae, and glycogen and triglycerides as energy reserves) of dauer larvae with those nematodes from P. polyphylla (control group). We found a significant preference for P. polyphylla, which correlated with higher values in the nematode's life history traits. In contrast, the preference for S. frugiperda and the saprophytic environment was lower, resulting in less efficient life history traits. These findings align with the optimal foraging theory, as the nematode's parasitic preferences are in line with maximizing fitness. This also indicates that R. regina exhibits specificity to P. polyphylla and is better adapted to a parasitic lifestyle than a free-living one, suggesting an evolutionary pathway towards parasitism.


Assuntos
Besouros , Nematoides , Parasitos , Rhabditoidea , Animais , Larva/parasitologia , Interações Hospedeiro-Parasita
18.
Zootaxa ; 5410(1): 134-144, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38480252

RESUMO

There are very few taxonomic studies of Brazilian sipunculan worms, and the species occurring along the northern coasts are largely understudied. We report herein the occurrence of four shallow water species along the intertidal zones of Bahia and Pernambuco states. Antillesoma antillarum (Grbe & Oersted, 1858) occurs from underneath beach rocks or within sandstone reefs and may reach high densities. The large species Sipunculus (Sipunculus) nudus Linnaeus, 1766, Sipunculus polymyotus Fisher, 1947, and Xenosiphon branchiatus (Fischer, 1895) were collected in sandy-mud, low-energy intertidal environments. For the first time, we report that sipunculans are collected and used as fishing bait by local fishermen in the Western Atlantic. All species are fully described, including notes on their external and internal anatomy.


Assuntos
Anelídeos , Nematoides , Animais , Brasil
19.
J Environ Manage ; 356: 120668, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492419

RESUMO

Grazing causes great disturbances in grassland ecosystems and may change the abundance, diversity, and ecological function of soil biota. Because of their important role in nutrient cycling and as good environmental indicators, nematodes are very representative soil organisms. However, the mechanisms by which grazing intensity, livestock type, duration, and environmental factors (e.g., climate and edaphic factors) affect soil nematodes remain poorly understood. In this study, we collected 1964 paired observations all over the world from 53 studies to clarify the grazing response patterns of soil nematodes and their potential mechanisms. Overall, grazing significantly decreased the abundance of bacterial-feeding (BF) nematodes (-16.54%) and omnivorous-predatory (OP) nematodes (-36.81%), and decreased nematode community diversity indices (Shannon-Weiner index: -4.33%, evenness index: -9.22%, species richness: -5.35%), but had no effect on ecological indices under a global regional scale. The response of soil nematodes to grazing varied by grazing intensity, animals, and duration. Heavy grazing decreased OP nematode abundance, but had no effect on the abundance of other trophic groups, or on diversity or ecological indices. Grazing by small animals had stronger effects than that by large animals and mixed-size animals on BF, fungal-feeding (FF), plant-feeding (PF) and OP nematodes, the Shannon-Wiener index, and the species richness index. The abundance of FF and OP nematodes influenced significantly under short-term grazing. The evenness index decreased significantly under long-term grazing (>10 years). Climate and edaphic factors impacted the effects of grazing on nematode abundance, diversity, and ecological indices. When resources (i.e., rain, heat, and soil nutrients) were abundant, the negative effects of grazing on nematodes were reduced; under sufficiently abundant resources, grazing even had positive effects on soil nematode communities. Thus, the influence of grazing on soil nematode communities is resource-dependent. Our study provides decision makers with grazing strategies based on the resource abundance. Resource-poor areas should have less grazing, while resource-rich areas should have more grazing to conserve soil biodiversity and maintain soil health.


Assuntos
Ecossistema , Nematoides , Animais , Pradaria , Solo , Nematoides/fisiologia , Biodiversidade , Bactérias
20.
J Parasitol ; 110(2): 114-126, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503317

RESUMO

An inventory of parasites infecting the jaguar (Panthera onca) across its distribution range is relevant for the conservation of this threatened big cat. In this study, we report the occurrence of helminths in a jaguar from Mexico using morphological techniques (cleared and stained mounts and scanning electron microscopy) and partial sequences of the 28S ribosomal RNA (28S rRNA) gene and the cytochrome c oxidase 1 mitochondrial (COI) gene. We also provide an updated list of helminth species reported in jaguars in the Americas. Three helminth taxa are identified in the jaguar examined from Mexico: Toxocara cati, Physaloptera sp., and Taenia sp. The new 28S rRNA sequences of To. cati, Physaloptera sp., and Taenia sp. and the COI sequence of Taenia sp. corroborate the identity of the helminths isolated from this host. One hundred and twenty-nine records of helminths parasitizing jaguars from 49 studies up to May 2023 were identified in the Americas. In most of these studies (73.6%), helminths were identified using coproparasitological techniques. Sixteen helminths (7 nematodes, 5 cestodes, 3 acanthocephalans, and 1 trematode) were identified at the species level in free-ranging and captive jaguars. The study demonstrates the value of an integrative taxonomy approach to increase the accuracy of parasite identification in wildlife, especially when helminth specimens are scarce or poorly fixed.


Assuntos
Helmintos , Nematoides , Panthera , Animais , Panthera/genética , México/epidemiologia , RNA Ribossômico 28S/genética , Helmintos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...